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Abstrad Assuming that there exist operators which form an irreducible representation of 
the q-superoscillatar algebra, it is proved that any two such representations are equivalent, 
related by a uniquely determined superunitay eansformation. ’Illis provides a q-supersymmetric 
genedimlion of the well known uniqueness theorem of von NeumaM for any finite number of 
degrees of M o m .  

In the last few years quantum deformations of Lie groups and Lie algebras have found 
several applications in mathematics and theoretical physics (see e.g. [l-31). These 
deformations have been subsequently extended to supergroups and superalgebras [ e ] .  In 
particular, the bosonic and femionic q-oscillators [7,8.6] have been used for the realization 
of different quantum Lie algebras r7-91 and quantum superalgebras [6, 10, 111. 

A natural question then arises, concerning the relation between different irreducible 
representations of the qdefomed algebras. It is well known that in the case of the 
classical bosonic and fermionic Heisenberg algebras for harmonic oscillators, this problem 
is solved by the von Neumann’s theorem (see, e.g. [IZ, 131), which states that irreducible 
representations of the bosonic (fermionic) algebra are unitarily equivalent to each other. 
Similar results also hold for irreducible operator representations of Lie superalgebras (of 
oscillators) [ 141. Recently, it was proved that the analogue of von Neumann’s theorem is 
also valid in the case. of q-oscillator algebras [15]. In the latter case, the unitary irreducible 
representations are non-unique as the algebra has a non-trivial central element [16, 171. 

In this letter we shall extend the results of [ 141 and formulate a quantum supersymmetric 
generalization of von Neumann’s theorem for irreducible representations of qdeformed 
superalgebras. We start from a supercovariant system of q-oscillators [ll], which are 
covariant under the coaction of a supergroup, SU,(nlm). The latter present the extension 
of the covariant system of q-oscillators proposed in 118, 191. Assuming suitable domain 
properties as in 1141, we prove that any two irreducible representations of the qdeformed 
superalgebra are connected by a unique superunitary transformation+. A similar result is 
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.+ We stress. however, that if the domain assumption is violated then one can eventually obtain non-equivalent 
reprsalations. This problem remains open. 
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also proved to be valid for any finite number, n, of bosonic and fermionic independent 
q-oscillators. We present the explicit form of the superunitary transformation operator for 
the cases n = 1 and 2. 

We start by recalling the classical von Neumann's theorem [12, 131. Let 6 ,  b+ and 
b', b" be two irreducible representations of the Heisenberg algebra, 

(1) 

in the Hilbert spaces H and H', respectively, and assume that there exist vectors 10 > in 
H and 10' > in H'. such that b10 >= 0, WIG' >= 0. Then there exists a unitary operator 
U such that 

bb+ - b'b = 1 

A similar theorem also holds in the case of the fermionic algebra [12. 131, 

cc+i-c+c= 1 . (3) 

The situation is different for the qdeformed bosoNc oscillator algebra 17, 8,6] 

aa+ - qa+a = q" 
'[N,a] = -a [N,a+l =a+ (4) 

due to the existence of a non-trivial c e n w  element of the algebra [K, 171. The unitary 
representations of (4) exist for q positive. [15]. Notice, however, that there exist two 
distinct classes of unitary irreducible representations [16] (see also [ZO]). one well-behaved 
for 9 + 1 and the other singular in the limit q + 1. In the case of well-behaved 
representations, the Fock representation of (4) can be realized in terms of the nondeformed 
oscillators (1) as [21] 

a = q(N)b a+ = b'p+(N) (5) 
where 

I _  -a 
and [n] = *. (For the exceptional values of q being the mth root of unity, q = esWlm, 
[m] = 0 and thus p(m - 1) = 0. In such a case the Hilbert space becomes finite m- 
dimensional). The equivalence of such representations? then follows f" von Neumann's 
theorem for usual oscillators: 

Let b, b+ and b', b'+ satisfy all the conditions of von Neumann's theorem and let us 
define the operators a, a+ and a', a'+ as 

a = 9(N)h a+ = b+p+(N) 
a' = 9(N')b' a'+ = b'+q+(N') (7) 

where 

N = b+b N' = b'+b' (8) 

t For the general m e  of w ( N )  = m, [Nlc E [NI + CqN. with #he central element C real. while the 
irreducible represenfations with the m e  C are equivalent they are not unitary quivdent for diffennt values of 
C [16. 171. 
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are the number operators and (0 is a well-behaved function. 
Then for the representations a,a+ and a',a'+ in some Hilbert (sub)spaces H. and 

Hi (H.  E H ,  Hi E H'), respectively, von Neumann's theorem also holds, i.e. a, a+ and 
a', a'+ are irreducible representations: then there exist vectors 10 > in Ha and ICY > in Hi 
such that a10 >= 0, a'lCY >= 0 and there exists a unitary operator U such that 

a' = UaU+ a'+ = (la+U+ N' = UNU' . (9) 

To prove (9) we notice that since b,b+ and b',b'+ satisfy the conditions of 
von Neumann's theorem, it follows that there exists a unitary operator U such that relations 
(2) hold From (2) and (8) it follows that 

N' = b'+b' = Ub+U+UbU+ = UNU+ 

and the same relation is also valid for the function q ( N ) ,  

q ( N ' )  = U q ( N ) U +  . 
Now, from the delinition of the operators U and a+ (equations (7)) we have 

UaU+ = Uq(N)bU+ = Uq(N)U+UbU+ = q(N')b'= a' 

and, similarly, 

UU+U+ =a'+.  

Relations (9) are thus proved. 
It is also clear that in the spaces H. and Hi there exist vectors 10 > and 10' > such that 

a10 >= 0, a'lCY =-= 0. Finally, a, a+ and a', a'+ are two irreducible representations in the 
Hilbert spaces Ha, Hi .  respectively. This follows from the definitions (7) and the fact that 
b, b+ and b', b'+ are irreducible representations in H ,  H'. 

A similar statement is also valid in the case of the q-deformed fermionic algebra [6] 

f f + + P f + f  = q M  
[M* f l  = -f [M. f+l = f+ 

which can be obtained from the algebra (3) by means of the change of operators 

f = q M f 2 ,  f+  =C+qMIZ.  

Let us remark that the abJve statements were proved in [I51 by following a proof along 
the same lines as the original von Neumann's theorem for usual (nondeformed) oscillators 
and valid also for generic values of q including the exceptional values of the mth mot of 
unity. The same theorem is also valid in the case of the othex q-fermionic algebra [22] 
given by the commutation relations 

ff + + 4 f  +f = KM 
[M. fl = -f [M. f+l = f+ . 

In fact, we can obtain this set from the bosonic algebra (1) hy means of the transformation 

where [n]f = (q-" - (-l)"q")/(q + q-l) ,  since in the Fock space we have the relations 
f + f = [M]f , ff+ = [M + l]f . 
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We now formulate our main result, namely, we prove that an irreducible representation 
of the qdeformed superalgebras is unique, up to a superunitary transformation, in the 
following sense: 
Theorem (i) 

deformed superalgebra [ 1 1 1 :  
Let Z = ( B .  E + ,  F ,  F + }  be an irreducible operator family, which satisfies the q- 

where 4 is a real number, F and F+ are bounded operators on the separable Hilbert space 
H and E ,  E +  are densely defined closed operators in If. Let .9 be a Grassmann variable, 
such that 

{e, F} '=  {e, F+} = ez = o 
[e, E ]  = [e, E + ]  = 0 . 

( I l d  
(lib) 

Let D and G be densely defined closed linear operators, defined on a suitable domain [14] 

where G and D are assumed to be even and cdd Grassmann elements, respectively. Assume 
that the operator family Z' = (E', B'+, F'. F"} also fulfills the algebra (IO) on a suitable 
domain of definition. 

Then, under the above conditions, there exists a uniquely determined self-adjoint odd 
operator A, such that 

and the transformation (12) is implemented by'the superunitary operator eRA such that 

eRABe-OA = B + @ [ A ,  B ]  = E' 

eHAFe-HA = F + @ ( A ,  F }  = F' . (16) 
Under the conditions of the above theorem, we have 

G I I ( B ,  E + )  = Goo(4B, q B + )  - G d B ,  E') (174 
Dio(B, B') = qCoo(4B. q B + ) B  - BGw(qB, qB+)  
Doi(B, B') = q-'G&(E, B + ) B  - BG&(B, B + )  . (176) 

The transformation eHA = 1 + BA is called superunitary if A is odd and self-adjoint. In 
particular, from &is definition it follows that (0, A )  = 0 and the latter is fulfilled only when 
0 satisfies the commutation relations (1 1). 
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Remark: 

general have the q-commutation relations with the elements of the algebra as: 
The Grasmann variable 0, being on the 9-plane of the oscillators given in (IO), can in 

0, F + p F 0 ,  = 0 
0,B -re@, = 0 

0, F+ + p-IF'0, = 0 
0,B' - r-'B+0, = 0 

with p and r real numberst. If however, we use the above q-commutation relations with p 
and r ,  instead of commutation relations (11). from the requirement of oddness of operator 
A and the supenmitarity condition (eova)+ = e-'@, i.e. A'@, = -0,A, one anives at the 
following 'q-self adjoinlness' condition, 

A+(& E+,  F ,  F+) = A(rB,  r-IB+, p F ,  p -1 F + ) 
instead of the usual one. The latter restriction seems rather unnatural, since a usual self- 
adjoint operator A on the original algebra of oscillators (IO) now acquires restrictions by 
the inclusion of an additional auxiliary Grassmann element 0,. Thus for our purpose we 
can restrict ourselves to the case p = r = 1, i.e. to the commutation relations (11). 

Proof of the theorem: 

superalgebras. 

F R  = 0[G, F ]  = 0, from which we obtain 

The proof is actually quite similar to the one given in I14J for the classical Lie 

From the relations F2 = F R  = 0 and using (114) we have, according to (12). 

[G, F ]  = O  . (18) 

Relations (loa), (lob) imply that 

for any function g ( B ,  B+).'.~Wth the ansae (13) and using (1Oe) and (19) we find 

[G, FI = (Gaa(B, E+)  - G~y3(q-~B,9-'B~) - G i l ( g - ' B , q - ' B + ) J F  .(20) 

Comparing (18) and (20) we get 

GII(B,  B') = Goo(qB,qB+) - Gw(B, E + )  (21) 
and substituting it into (13) we obtain 

~~ 

G = G a a ( B , B + ) F F + + G a a ( q B , ~ B ' B + ) F + F .  , (22, 

G = [ A ,  F )  (23) 

Let us now take G, in the required form (14). as 

t These7q-commutation relations. because of associativity, are of course compatible with the supersymmetric 
q-lacobi identities 

where qz = 1 if Z is odd, qz = 0 if Z is even and [A .  Bl(p,qb = p A B  T ~ B A ,  where we take the plus sign when 
both A and B are odd, otherwise we take the minus sign. The above expression represents the m m  general form 
of the supersymmetric q-Jawbi identities, which includes lhree arbitmy complex paramelen 41. ~2 and 4). 
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where A is odd. Assuming that A is self-adjoint, i.e. A+ = A ,  we can write 
A = F+a(B,  E + )  +&(B. B+)F 

C = &E, qB+)F+F + a(B, B+)FF+.  

(24) 

(3) 
and we have from (23) 

Comparing (22) and (2% we find 
u(S, E + )  =Gw(B, E+)  

and by substituting it back into (24), the relation (15) is obtained. 
Now to find D, we use relations (loa) and (1 1). We have 

B‘F’- qF’B’ = O(DF + BG -qCB +qFD) 0. (26) 

{D - [ A ,  B])F + q F ( D  - [A ,  E ] )  0 .  (270) 

Substituting (23) into (26) and using (loa), we will obtain then that 

Similarly, from (lob), (11) and C+ = { A ,  we obtain 

{ D - [ A , B ] ] F + + q - ’ F f ( D - [ A , B ] ] = O .  (27m 
Thus, from equations (27) we conclude that 

D = [ A ,  B] . (28) 
Finally, the operator e@* is superunitary since A is odd and self-adjoint (see equation (24)). 
Moreover, we have 

eOAge-EA = ( I + O A ) B ( I - B A ) = B + B [ A . B ] = B ’  
e O A ~ e - e A  = ( I + O A ) F ( l - O A ) =  F + B { A , F ] = F ’  

i.e. relations (16) hold. The proof of the relations (17) is straightforwad equation (17a) 
was already proved (see equation (21)) and relations (17b) follow from (13). (14). (15) and 
(19). This completes the proof. When q = 1, we reproduce the results of [14]. 

Let us remark that a pair of one bosonic, 6, b’, and one fermionic, f ,  f + ,  independent 
q-oscillators (which satisfy the relations (30)), can also be introduced by means of the 
transformation [ 1 I] 

b = q$fMB f = q ? F  

[M, F ]  = - F  
[N, B ]  = - E  [N, E+]  = B+ N+ = N (29) 

[M, F+] = F+ 
where B and F are the elements of supemvariant algebra (IO). In this case, the uniqueness 
(up to a superunimy transformation) of any irreducible representation of b, b+. N, f. f +, M 
is given by the following 
Theorem (iij 

q-oscillator algebra 

M+ = M 

r ) .  

Let Z = {b, bC, N, f ,  f + .  M )  be an irreducible operator family, which satisfies the 

[b, f l  = 0 [b, f+l = 0 (300) 
f 2  = ( f + y  = 0 
bh+ - q-’b+b = qN (30~) 
f f + + & f  = q M  (304 
[N, b] -b [N, b+] = bC (304 
t M . f l = - f  [ M , f + l = f +  (30~ 
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on a suitable domain of definition: q is real. Let 6 be. a Grassmann variable 

[e, f)=[e.  f+ ]=e*=o  
[e, b] = [e, b+] = 0 . 

Define 

where D and G, the even and odd Grassmann elements, respectively, have the most general 
form as in (32). Assume that the operator family Z' = {b', b'+, N', f', f'+, M') also fulfills 
the algebra (30) on a suitable domain of definition. 

Then there exists a uniquely determined self-adjoint cdd operator A, such that one can 
write 

G=[A,  f )  D=[A,b] 
A = f+a(b,b+, M)+a+(b,b+,M)f = A +  

and the transformation (32) is implemented by the superunitary operator eVA such that 

e8Abe-8A = br 

cEA f C 4 A  = f '  . (35) 

Under the conditions of the above theorem (ii), we have 

Gw(b, b+, M) = a(b, b+, M ) q M  
Gu(b, b+, M) = a(b, bc, M - 1) - qa(b, bf, M) (36d 

and 

Dx,,(b, b+, M) = [a(b, b+, M - 1). b] Dol = [a+(b, b+, M), bl. (36b) 

The proof is similar to the one of theorem (i) and need not be given. 
Let us notice that from the theorem (ii), it also follows that 

euANe-RA = N + @[A, NI = N' 
enAMe?A = M +@[A, MI = M' . (37) 

Indeed, relations (35) imply that for any functions p(bb+, b+b) and *(ff+, f+  f), one has 

eRA9(bbf, bfb)e-uA = 9(b'b'+, b'+b') 

eeAtl(ff+, f+f )  e-RA = @(f'f'+. f'+f') 

9 = N and $ = M are just particular cases of these functions (see equations (3Oc) and 
(3Od). respectively). 

Here we would like to mention that there exists a relation between the transformations 
of theorems (i) and (ii). Indeed, if one takes in (34) 

a(b, h+, M) = q-M'2Gw(B, Bf) (38) 

where B = 4-5 N-Mb, F = q-'/2 f according to (29). it is straighforward to show that the 
superunitary transformation generated by (34), (35) with a given in (38), corresponds to 

I '  
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the superunitary transformation ( a ) ,  (16) of theorem (i), and therefore equations (17) are 
satisfied. 

Also it will be interesting to find a direct relation between the, superunitary 
transformations of the usual (undeformed) and of the qdeformed cases obtained hem, in 
the same way as such a relation exists for the non-supersymmetric q-oscillators treated in 
section 2. 

To summarize, we have shown that the irreducible representations of the q- 
superoscillator algebra are equivalent and are related by a unique superunitary 
transformation. The q-supersymmetric generalization of von Neumann’s theorem, presented 
above ( N  = 1 supersymmetry); is for only one bosonic and one fermionic degrees of 
freedom. Our results can be extended to the supersymmetric case with any number of 
bosonic and fermionic degrees of freedom. The theorem now can be formulated as follows: 

Theorem Gnite degrees offreedom): 

satisfies the q-oscillator algebra 
Let z = ( b k ,  b:, Nk, fx, fxf. M k ;  k = 1, ..., a) be an irreducible Operator set, which 

with all the other (anti)commutation relations vanishing (i.e. independent system of q- 
oscillators); q is real. 

Assume now that another set of operators Z’ = (hi, bLt, NL, f ; ,  fLt, ML; k = 1, ..A) 
also satisfies the same algebra (39). Then the two sets Z and Z’ are equivalent, related by 
a unique superunitary transformation such that 

hi = UbkU+ f ;  = ufkut U =enA (40) 

with the same relation between the remaining elements of the two sets. In (40) 0 is a 
Grassmann variable satisfying the (anti)commutation relations (31) for all the bk. b:, f a .  f l  
and A is a self-adjoint odd operator. 

The proof of the theorem can be most easily performed by the method of induction in 
the number of degrees of freedom, n. In addition to the explicit form of the superunitary 
operator for n = 1 given in theorem (ii), we present below explicitly the formulae. for the 
case n = 2. 

Define 
~~ 

bi=bk+BDk f ;=fk+eck  k = 1 , 2  (41) 

where Gk have the most general form 

all the coefficients in (42) can depend on bt,b:, Ne ,Me  (l = 1,2). From the 
anticommutation relations { f ; ,  f ; ]  = [ fL+, f ” ]  = { f [ ,  f it} = { f i t ,  f i }  = 0, we obtain 

terms of CY, G:, G:, G: and their Hermitian conjugates. Now if we ulite Gk in the form 
that Hi = K ;  = 0 and that the coefficients C k ,  b Gi2. Hk, Kk (k  = 1.2) can be expressed in 
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Gk = [ A ,  f k ] ,  then it is svaightforwad to show that there exists a unique self-adjoint odd 
operator A given by 

and from the commutativity between the L I ~  and f;, we obtain the requiied form 
Dk = [ A ,  bkl. 

It is our pleasure to thank A Demichev for useful discussions and several clarifying remarks. 
R G F would like to thank ICSC-World Laboratory l for financial support P P is grateful to 
the Research Institute for Theoretical Physics, University of Helsinki, for their hospitality. 
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